CLAYTON STATE

UNIVERSITY

Design and testing of
photon-based hardware
random number
generator

By: Nikolas Thornton*, Dmitriy Beznosko

*presenter

////////



Random numbers & their uses

CYBERSECURITY MACHINE LEARNING .
As well as physics
Key generation « Modelinitialization simulations, lotteries, and
Encryption algorithms « Mutations video games.

Dropout selection

6/3/2024



Pseudo-random number generators

Seed - an input that PRNGs use to define their randomness.

Sead for the world generator

Leweblark foraruncnsend

Figure 1. The seed-input box for the video game Minecraft.

Pros: Cons:

 Easily replicable results * Easilyreplicable results

. No external hardware necessary « Notrandom enough for many use cases

6/3/2024



Photon-based solution to random
number generation

Advantages of photon-based solutions

« Photon amplitude detection is an
inherently chaotic process [1].

 The hardware involved is relatively
cheap.

Figure 2. Concept design using an
LED that pulses in sync with the
reading of a photo-multiplier-tube.

6/3/2024



Photon-based HRNG Prototype

Current prototype produces ~3500 amplitudes per
second. Amplitudes are sent via serial and saved to
a computer where they are processed.

Prototype hardware:

e Arduino Nano

« Multi-Pixel Photon Counter (MIPPC) [2]
e Serially programmed power supply

e LED

Figure 3. Concept design using an
LED that pulses in sync with the
reading of a photo-multiplier-tube.

6/3/2024



Processing Amplitudes

| VJon
igh/Low Neumann’s
if amp[i] > amp[i-1]: bitstream += 1 DrOCEdure

if amp[l] < amp[1—1]: bitstream += @ e Search bitstream for pairs of 00 and 11.

else: skip * For each pair of 00 and 11, add a © to a new
bitstream A and a corresponding 1 or @ to
bitstream a new B.
e For each non-matching pair, add a © to bitstream

- /Od d A and a 1 or @ (depending on the first bit of

_\je n the pair) to a new bitstream C.

e Recursively return the value of Neumann’s
procedure for each bitstream A, B, and C in the

if amp[i] % 2 == 0: bitstream += 1 order of C+A+B.
else: bitstream += ©

6/3/2024 6



Average & Standard Deviation Test

Using data collected over the course of 1 minute.

Pre-Neumann bitcount: 214676
Post-Neumann bitcount: 208707
Pre-Neumann

This test is sensitive to data that
has an inordinately unequal number of 1s
and Os, although it does not determine
whether the bitstream is necessarily
random.

6/3/2024

Average: 0.4987422907/078574
Standard Deviation: 0.49999841816483426

Post-Neumann

Average: 0.5004000824121855
Standard Deviation: ©.49999983993403785



Monte Carlo Pi Estimation Test Results

Using data collected over the course of T minute.

Pre-Neumann bitcount: 214676 yielding 13417 coordinates
Post-Neumann bitcount: 208707 yielding 13044 coordinates

Python also generates pi using its Pre—Neumann

own random library but using the same
number of coordinates as Pre-Neumann & Estimated Pi: 3.13572333607
Post-Neumann. This helps determine
whether a poor-quality pi is due to poor
quality data or too few coordinates.

Post-Neumann

Estimated Pi: 3.13002146581

all dots += 1
if x*2 + y*2 <= 1: red_dots += 1
pi = 4*(red _dots/all dots)

Figure 5. Psuedo-code

Python’s coords
describing how the MCPE

Figure 4. Example test calculates pi Pre-neumman’s bit total: 3.13453081911

visualization of the Post-Neumann’s bit total: 3.14872738424
MCPE test

6/3/2024



The Fractional Line Symmetry Test

Count how frequently 1s or Os appear back-to-back for a determined length within the bitstream,
called lines, where additional bits at the end of lines are added as fractional lines to the line total
both horizontally and vertically for a stacked bitstream.

Terms:

Line: A single instance of back-to-back
bits that meet the detect length.

Detect Length: How many times a bit
must appear back-to-back before being
counted to the line total.

Horizontal Search: Linearly search
unmodified bitstream for lines.

Vertical Search: Stack bitstream into a
square matrix and count number of lines
top to down starting in the top right.

Fractional Line: Additional bits attached
to an already full line that get added
fractionally to the line total.

6/3/2024

Example: Searching the bitstream

100010 horizontally for Os with a detect
length of 2 totalling 1.5 lines.

Is not already
connected to a
. complete line, so if
1 Line Y Line does not count.

1.5 Lines

Figure 6. How the FLS test counts lines



6/3/2024

FLS Test Visualization

Example Pre-Neumann bitstream
visualization using High/Low processing.

Figure 7. Pre-Neumann High/Low
bitstream visualization

10



FLS Test Visualization

e

gure 8. Pre-Neumann High/Low
itstream horizontal FLS test. visualization vertical FLS test

c T

6/3/2024



Vertical Line Counting

Original bitstream.

. I :

Unstack bitstream left to right, top to down.

Remove the “nothing bits”

Stack bitstream left to right, top to down into a l

square image and rotate Counter-clockwise Count lines as you would for horizontal lines

Add “nothing bits” to make bitstream stackable

. KN K

1 line 15 line Does not count

] |
| Illn

1.5 lines total

6/3/2024

12



The FLS Test Results

Using data that was collected over the course of 1 minute.

Post-Neumann bitcount: 208707
Searching for: ©
Detect length: 4

Estimated Line Count: 8152.62
Horizontal Line Count: 8094 .25
Vertical Line Count: 8190.5
The number of lines expected to
be found can be calculated using VVisualization
n+1 ,
(2n+1)p X

where nis the detect length and lis the
length of the bitstream.

Figure 10. FLS test Figure 11. FLS test vertical

horizontal line visualization i i i i
6/3/2024 line visualization 15



Conclusion

The photon-based solutions explored in
this research have shown great potential as high
speed solutions for high quality random number

generation.

Future plans:

6/3/2024

Use a faster micro controller solution.

Implement more tests for randomness such
as the Ent test.

Unify amplitude reading, processing, and
testing into one program.

House the HRNG.
Secure the LED to the MPPC.

Use voltage controller for the LED instead of
PVWM.

Figure 12. The current
HRNG prototype alongside
its future enclosure.

14



References

[1] D. Beznosko et al., "Random Number Hardware Generator Using Geiger-Mode Avalanche Photon
Detector”, e -Print: 1501.05521, DOI: 10.22323/1.252.0049, PoS PhotoDet2015 (2016), 049

[2] Hamamatsu Photonics K.K., 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref., 430-8587,
Japan

6/3/2024

15



	Design and testing of photon-based hardware random number generator 
	Random numbers & their uses
	Pseudo-random number generators
	Photon-based solution to random number generation
	Photon-based HRNG Prototype
	Processing Amplitudes
	Average & Standard Deviation Test
	Monte Carlo Pi Estimation Test Results
	Count how frequently 1s or 0s appear back-to-back for a determined length within the bitstream, called lines, where additional bits at the end of lines are added as fractional lines to the line total both horizontally and vertically for a stacked bitstream.
	FLS Test Visualization
	FLS Test Visualization
	Slide Number 12
	Slide Number 13
	Conclusion
	References

